Connecting a RS Pro kWh energy meter to AWS IoT platform with the FATBOX G3 Gateway

Cloud monitoring energy usage via Modbus RTU

- In this tutorial, we will set up a RS Pro 45A kWh Energy Meter as a **Modbus RTU slave** and interface to our FATBOX G3 gateway **Modbus master**.
- The gateway is able to support up to 32 Modbus devices, including meters and remote I/O terminal. The standard industrial Modbus/RTU protocol runs on Serial RS-485 interface, providing a robust & reliable interface.
- We will also look at **connecting the G3 IOT Gateway to AWS IoT**. Supported clients are AWS IoT, Azure IoT Hub and Ubidots.
- Users have the option of backhaul via either wired Ethernet, WIFI or cellular (4G/3G) for remote sites/redundancy.

Above shows the Serial RS-485 connection usually implemented using shielded twisted pair cable.

Note maximum cable length depends on baudrate and cable quality, e.g. using 24AWG shielded twisted pair, about 100Kbit/sec at 1000m.

Image courtesy of eng-tip.com

RS Pro Meter Configuration

Use the front display/button to set the serial parameters as below.

All slave devices connected on the RS-485 network must each have a unique address ranging from 1 to 247. Also, the baudrate and parity for all slave devices and master must be the same.

Connect Meter to Gateway

Our gateway uses a device configuration file called iotasset to map the required Modbus registers to be read during each polling cycle. This flexibility allows wide compatibility with most Modbus RTU devices from different manufacturers.

To setup this device configuration file, we will be referencing the Modbus register table from the product user manual (see sample below):

Address	Input Regist	Modbus Protocol Start Address Hex				
(Register)	Parameter	Units	Format	High Byte	Low Byte	
30001	Voltage	V	Float	00	00	
30007	Current	А	Float	00	06	
30013	Power	W	Float	00	0C	
30019	Active Apparent Power	VA	Float	00	12	
30025	Reactive Apparent Power	VAr	Float	00	18	
30031	Power Factor	None	Float	00	1E	
30071	Frequency	Hz	Float	00	46	
30073	Import Active Energy	kWh	Float	00	48	
30075	Export Active Energy	kWh	Float	00	4A	
30343	Total Active Energy	kWh	Float	01	56	

And here is a sample of the iotasset. In the top example, we are configuring to read Current (A) register from meter Modbus address 1, register 30007 and name data field name, as "M1_Current".

The gateway is able to apply a customer multiplier (x0.1 in this case) and offset (0 in this case) to match the requirements of their cloud service.

MBM_START TYPE,R ADDR.1 MBFC,3 REGS,2999,2,FLOAT32ABCD,0.1,0 Key,M1_Current Unit,A TYPE.R ADDR,1 MBFC,3 REGS, 3027, 2, FLOAT 32ABCD Key,M1_Voltage Unit,V TYPE,R ADDR.1 MBFC.3 REGS,3053,2,FLOAT32ABCD Key,M1_ActivePower Unit,kW MBM_STOP

Once you have configured your iotasset file the new device configurations can be updated to your FATBOX gateway securely over the air. The gateway HTTPS connected webconsole must be accessible, either via local network (LAN or WLAN) and over cellular network with assigned public IP address (If you do not have an Internet connection, you can follow the alternative steps <u>here</u>).

Log into your web console and go to the <IoT Hardware> tab, click on 'UPDATE FIRMWARE' in the Firmware Update section

Hardware :: Setting	
Modbus mode[iotasset.pdf]	Modbus master V
CAN bus mode[iotasset.pdf]	Disabled OBD2/Request : Query mode
Zigbee mode[iotasset.pdf]	Disabled Auto Reporting : Read mode
Event Drop Type	Disabled •
Poll Period	15 secs
Poll Time Out	5 secs
Query Pause	0.1 secs (pause between Modbus queries)
Timestamp Offset	8 hours (eg -2.5 or +8)
	Update
Diagnostics :: JSON Data	Delete Data Warning Will delete all user sensor data
Diagnostics :: Check File	Upload lotaset.txt File

In the new window, click on 'CHOOSE FILE' and select from your local folder the updated iotasset.txt file then click on 'UPLOAD FIRMWARE FILE'. After the upload is successful you will need to close the page and log in again for security purpose. We will now configure the gateway's serial port to operate as required for the attached Modbus devices. Go to the *Port Settings* tab and enter the following settings.

Serial Port Parameters
Port Mode Selection
Speed
Data Bits
Parity
Stop Bits
Serial Port Parameters
Stop Bits
Serial Parity
Parity
Stop Bits
Serial Parity
Serial Parity
Stop Bits
Serial Parity
Stop Bits
Serial Parity
Stop Bits
Serial Parity
Stop Bits
Serial Parity
Seri

Then, go to the *IoT Hardware* menu to set the Hardware interface to "Modbus master" and register the polling configuration as required by the user (Note that all other interfaces like CAN bus and Zigbee can

also run concurrently).

Hardware :: Setting	
Modbus mode[iotasset.pdf]	Modbus master V
CAN bus mode[iotasset.pdf]	Disabled V OBD2/Request : Query mode
Zigbee mode[iotasset.pdf]	Disabled Auto Reporting : Read mode
Event Drop Type	Disabled v
Poll Period	120 secs
Poll Time Out	5 secs
Query Pause	0.1 secs (pause between Modbus queries)
Timestamp Offset	8 hours (eg -2.5 or +8)
	Update
Diagnostics :: JSON Data	Delete Data Warning : Will delete all user sensor data

After these settings are updated, **REBOOT** the gateway. The user can then check the Modbus sensor data collected (JSON Data) or delete for testing.

Connect to a Cloud Service

Now that the connectivity between the RS Pro Meter and the G3 gateway has been set, we will then look at getting the data onto a suitably designed dashboard for monitoring on a custom cloud platform like Azure IoT, AWS IoT, Google Compute *or* an end solution like Ubidots.

For this project, we are going to showcase using <u>AWS IoT</u> cloud platform.

Contents

- 1. Create a new AWS loT Thing
- 2. Update your G3 loT gateway
- 3. Create a Security Policy for your Thing
- 4. Configure your G3 IoT Gateway to send data to your AWS account

1. Create a new AWS loT Thing

First log into your AWS IoT Management Console and create a Thing: *AWS IoT > Manage > Thing > Create*

Next go to: Secure > Certificates Then download the 'Certificate' & 'Private Key File'.

Ensure the Certificate is "Active", otherwise activate it under ACTIONS in *Things > Your Certificate > Security*

aws	Services 🗸	Resour	ce Groups 👻 🔸						\$ sc.aws 👻	Oregon
			Certificate creat	ed!						
			Download these files and sa after you close this page. In order to connect a device	ave them in a safe place. Certificat re, you need to download the foll	es can be retrieved at owing:	any time, but the p	private and public k	eys cannot be retrieved		
			A certificate for this thing	54cce02d20.cert.pem	Download					
			A public key	54cce02d20.public.key	Download					
			A private key	54cce02d20.private.key	Download					
			You also need to download A root CA for AWS IoT Down Activate	l a root CA for AWS loT: aload						
			Cancel				Done	Attach a policy		

2. Update your G3 IoT Gateway

Create a new local folder and name it "AWS". Save the downloaded certificate files into this folder and rename them as the following:

"certificate.pem.crt" "private.pem.key"

Next zip the folder (ensure that you zip the entire folder and not just the files inside).

Then log into your FATBOX G3 web console and go to the <Management> tab. Patch the zipped folder to the gateway using the UPDATE FIRMWARE button.

3. Create a Security Policy for your Thing

In your AWS IoT Management Console go to: Secure > Policies > Create

aws Services - Resou	irce Groups 🗸 🔺	4	scaws ¥	Oregon 👻	Support 👻
÷	Create a policy				Ф (2)
	Create a policy to define a set of authorized actions. You can authorize actions on one or more resources (things, topic, topic filters). To learn more about IDT policies go to the AVIS to T Policies documentation page. Name New_Things, Policy				۲
	Add statements Policy statements define the types of actions that can be performed by a resource. Advanced mode				
	Action Iot* Resource ARN				
	• Effect Attow Deny Remove				
	Add statement				

At <Things>, select your new Thing then click on Security > Certificates > Policies

Under <Actions>, choose to Attach a Policy:

	*			_	
Things > Tes	Atta	ach policies to certificate(s)			
	E Policie 02 54cco Choc	rs will be attached to the following certificate(s): e02d20557f32da8df9bca21e9274ed9bfb7ca5080067e75fd7b079c331 ose one or more policies	e3	3 Actions -	
Details Policies		Search policies		_	
Things		amplified	View		
Non-com	liane	New_Things_Policy	View		
	L	1 policy selected Cancel	Attach		

4. Configure your G3 IoT Gateway to send data to your AWS Account

Now, you are ready to configure your gateway to send AWS IoT endpoint to feed data to your AWS applications. In the FATBOX G3 web configuration menu, go to the <IoT Client> tab and configure your AWS client settings according as per your AWS end point and Thing settings. Then REBOOT your gateway.

Client Setup :: AWS IoT	
G3 AWS IoT Quick Start Guide.pdf (NA)	
Thing Name	meter8
Торіс	data
AWS Endpoint	[a33rz5dlue817h-ats.iot.us-west-2.am]
AWS Port	8883
Enable client	Enabled V
	Update

Next go back to go your AWS IoT console and subscribe to the Topic to "Test" that data is being received.

aws Services -	Resource Groups 👻 🔸	1	Ĵ sc.aws ▾ Oregon ▾ Support ▾
STR AWS INT	Subscriptions	data	Export Clear Pause
Montor Dribeard Manage Greenguas Secure Defend	Subscribe to a topic Publish to a topic data X	Publish Specify a tapic and a message to publish with a QoS of 0. data	Publish to topic
Test		data Mar 15, 2020 11:53:18 PM +0800	Export Hide
		<pre>{ "thing": "meter8", "field_id": "M2_TotalActiveEnergy,0.001,0", "timestamp": "1584284012000", "data": "4821" }</pre>	
		data Mar 15, 2020 11:53:15 PM +0800	Export Hide
Software Settings Learn		<pre>{</pre>	

Congratulations! You have succesfully sent your Modbus or CAN bus data to your AWS IoT endpoint and ready to, for example, push the data to a S3 bucket using a Rule in 'Act > Rules'. The FATBOX G3 AWS IoT client side is built using AWS IoT Device SDK for Python and users are free to install, modify our device client codes for enhanced edge capabilities or other required functionalities.